（II）Phase－Space Networks of Frustrated Spin Models Yilong Han

 香港科大

 香港科大}

HKUSTDepartment of Physics，The Hong Kong University of Science and Technology

We propose a complex－network approach to study phase－space structures of two frustrated spin models．Their highly degenerated ground states are mapped as discrete networks such that the quantitative network analysis can be applied to phase－space studies for the first time．The resulting phase spaces share some common features and establish a class of complex networks with unique Gaussian spectral densities．A one－to－one correspondence is discovered between the six－vertex model（jigsaw puzzle）and sphere stack．

Models：

1．Antiferromagnetic Ising Spins on Triangular Lattice（ground state）

1－1 mapping to cube stacks

Phase spaces are ergodic except for periodic boundary conditions

Fixed Boundary Conditions（can be viewed as stacks） Mean visiting frequency of node $\mathrm{i} \propto$ its connectivity $\boldsymbol{k}_{\mathrm{i}}$ ；staying time $\propto 1 / \boldsymbol{k}_{\mathrm{i}}$ Example：
A random walker visits（4） 6 times more frequently than visiting（a） $\begin{aligned} & \text { However，the staying time at } \\ & \text { for random spin flipping }\end{aligned}$ The staying time at \Rightarrow ergodic

Periodic Boundary Conditions
（1）（1）（1）（1） （1） For $\mathbf{m} \times \mathbf{n}$ square ice，we proved that

$$
>2^{m+1}+2^{n+1}-4 \text { single nodes }
$$

© $>(m-1) \times(n-1)$ nontrivial networks $>\frac{(m+n-1)!}{(m-1)!(n-1)!}$ nodes in the smallest nontrivial networks

Open questions in math

Cube stack is equivalent to the plane partition problem in ombinatorics and number theory which has been intensively studied．However，the combinatoric properties of sphere stacking has not been explored．For example：

Number of ways to pack cubes in a box with side length L $N(L=1,2,3,4 \ldots)=2,20,980,232848 \ldots$ are give by the MacMahon formula：

$N(L=1,2,3,4 \ldots)=2,7,42,429,7436,218348$.
i．e．the alternating－sign matrix theorem
$N_{L}=\prod_{\text {LSIS } \leq L+1} \frac{L+i+j}{} \frac{L+j-1}{i}=\prod_{j=0}^{L} \frac{(3 j+1)!}{(L+j+1)!} \sim\left(\frac{27}{16}\right)^{1}$
when $L \rightarrow \infty$
Our numerical result：$N(L=1,2,3,4 \ldots)=2,18,868,230274 \ldots$ Formula for $N(L)=$ ？

2．six－vertex model（i．e．square ice，spin ice or jigsaw puzzle）

Gaussian spectral density for all phase－space networks

Spectral Density $\rho(\lambda)$ ：
the distribution of eigenvalues of the adjacency matrix $\rho(\lambda)$ characterize the topology of the network
＞Phase－space networks：Gaussian
＞Random networks：semicircular（Wigner＇s semicircle law）
$>$ Scale free networks：triangular with a power－law tail
＞Other networks：irregular
\Rightarrow Phase－space networks belong to a new class of networks with unique topology．

Proof at the infinite－size limit：

$\rho(\lambda)$＇s q th moment，M_{q} ，is directly related to the network＇s topology． $D_{q}=N_{\text {node }} M_{q}=\sum_{i=1}^{N_{\text {Node }}} \lambda_{i}^{q}$ is the number of paths（or loops）that return back to the original node after q steps．
By counting loops in the network with the help of the cube／sphere－ stack pictures，we can prove
$D_{2}=0, D_{2} \simeq(2 n-1)!!\sigma^{2 n} \Longleftrightarrow$ Same as the moments of
$D_{2 n}$ becomes exact at infinite－size limit．The variance

References：

Yilong Han，Phys．Rev．E 80， 051102 （2009） Yilong Han，Phys．Rev．E 81， 041118 （2010）

Boundary effects
directly visualized in 3D stacks

Common features

$>$ Small－world property
$>$ Gaussian degree distribution
$>$ Gaussian spectral density
$>$ Fractal

