|
|
publication list in Google Scholar
[83]
Percolation transition in entangled granular networks, S. Kim, D. Wu and Y. Han*,
arxiv 2509.00216 (2025)
[82]
Mechanical properties of crystalline-amorphous
composites: generalization of Hall–Petch and
inverse Hall–Petch behaviors, Z. Xu, M. Li and Y. Han*,
National Science Review in press (2025)
[81]
Distinguishable-particle glassy crystal: the simplest molecular model of glass, L.S.I. Lam, G. Gopinath, Z. Zhao, S. Wang, C.-S. Lee, H.-Y. Deng, F. Wang, Y. Han, C.-T. Yip*, and C.-H. Lam*,
J. Chem. Phys. 163, 024505 (2025)
[80]
Nucleation kinetics and virtual melting in shear-induced structural transitions, W. Li, Y. Peng, T. Still, A. G. Yodh, and Y. Han*,
Rep. Prog. Phys. 88, 010501 (2025)
(highlighted by
Physics World)
[79]
Polymorphic crystalline layer at the crystallization front, M. Li, Z. Xu, Q. Zhang, W. Li, Y. Zhang, and Y. Han*,
Phys. Rev. Lett. 133, 248202 (2024) (highlighted by
synopsis in APS Physics)
[78]
Chiral active particles are sensitive reporters to environmental geometry, C.W. Chan, D. Wu, K. Qiao, K.L. Fong, Z. Yang, Y. Han and R. Zhang*,
Nat. Commun. 15, 1406 (2024)
[77]
Anisotropic-isotropic transition of cages at the glass transition, H. Zhang*, Q. Zhang, F. Liu, and Y. Han*,
Phys. Rev. Lett. 132, 078201 (2024)
[76]
Searching for various melting scenarios of 2D crystals, P. Hua and Y. Han*,
Matter 7, 19-22 (2024) (invited preview),
arXiv:2410.11286
[75]
Soft matter roadmap, J.L. Barrat,... Y. Han, et al.
Journal of Physics: Materials 7, 012501 (2024) (invited review)
[74]
Two modes of motions for a single disk on the vibration stage, L. Guan, L. Tian, M. Hou*, Y. Han*,
Journal of Physics: Condensed Matter 36, 115102 (2024)
[73]
In situ observation of nucleus coalescence in colloidal crystal-crystal transitions, Y. Peng*, W. Li, T. Still, A.G. Yodh, and Y. Han*,
Nat. Commun. 14, 4905 (2023)
[72]
Generalization of the Hall-Petch and inverse Hall-Petch behaviors by tuning amorphous regions in 2D solids, Z. Xu, M. Li, H. Zhang*, and Y. Han*,
National Science Open 2, 20220058 (2023) (cover article)
[71]
Polymorphic crystalline wetting layers on crystal surfaces, X.P. Wang*, B. Li*, M. Li, and Y. Han*,
Nat. Phys. 19, 700 (2023)
[70]
Surface premelting and melting of colloidal glasses, Q. Zhang, W. Li, K. Qiao, and Y. Han*,
Sci. Adv. 9, eadf1101 (2023)
[69]
Effects of size ratio on particle packing in binary glasses, H. Zhang*, C. Luo, Z. Zheng*, and Y. Han*,
Acta Mater. 246, 118700 (2023)
[68]
A regime beyond the Hall–Petch and inverse-Hall–Petch regimes in ultrafine-grained solids, H. Zhang*, F. Liu, G. Ungar, Z. Zheng, Q. Sun, and Y. Han*,
Commun. Phys. 5, 329 (2022)
[67]
Shear-induced amorphization in nanocrystalline NiTi micropillars under large plastic deformation, P. Hua, B. Wang, C. Yu, Y. Han, and Q. Sun*,
Acta Mater. 241, 118358 (2022)
[66]
Morphologies and dynamics of free surfaces of crystals composed of active particles, G. Xu, T. Huang, Y. Han*, and Y. Chen*,
Soft Matter 18, 8830 (2022)
[65]
Internal-stress-induced solid-solid transition involving orientational domains of anisotropic particles, T. Huang, C. Zeng*, H. Wang, Y. Chen, and Y. Han*,
Phys. Rev. E 106, 014612 (2022)
[64]
Hydrodynamic couplings of colloidal ellipsoids diffusing in channels, Z. Zheng, X. Xu, Y. Wang, and Y. Han*,
J. Fluid. Mech. 933, A40 (2022)
[63]
Mean-field model of melting in superheated crystals based on a single experimentally measurable order parameter, N. P. Kryuchkov, N. A. Dmitryuk, W. Li, P. V. Ovcharov, Y. Han, A. V. Sapelkin, and S. O. Yurchenko*,
Sci. Rep. 11, 17963 (2021)
[62]
Morphologies and dynamics of the interfaces between active and passive phases, G. Xu, T. Huang, Y. Han*, Y. Chen*,
Soft Matter 17, 9607 (2021)
[61]
Dynamics of a vibration-driven single disk, L. Guan, L. Tian, M. Hou, and Y. Han*,
Sci. Rep. 11 16561 (2021)
[60]
Book chapters (“Introduction”, “Melting” and “Solid-solid transition”) in a Chinese book “胶体中的相变和自组装 Phase transitions and self-assembly in colloids”, Y. Han,
May, 2021 科学出版社 Science Press
[59]
Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers, Z. Zheng, R. Ni, Y. Wang* and Y. Han*,
Sci. Adv. 7, eabd1958 (2021)
[58]
Surface roughening, premelting and melting of monolayer and bilayer crystals, X. Wang, B. Li, X. Xu* and Y. Han*,
Soft Matter 17, 688 (2021)
[57]
Direct evidence of void-induced structural relaxations in colloidal glass formers, C. T. Yip, M. Isobe, C.-H. Chan, S. Ren, K.-P. Wong, Q. Huo, C.-S. Lee, Y.-H. Tsang, Y. Han, and C.-H. Lam*,
Phys. Rev. Lett. 125, 258001 (2020)
[56]
Shear-assisted grain coarsening in colloidal polycrystals, W. Li, Y. Peng, Y. Zhang, T. Still, A.G. Yodh, and Y. Han*, PNAS, 117, 24055 (2020)
[55]
Power laws in pressure-induced structural change of glasses, H. Zhang, K. Qiao, and Y. Han*, Nat. Commun. 11, 2005 (2020)
[54]
Seeing crystal formation one particle at a time, Y. Han*, Nat. Mater. 19, 377 (2020)
[53]
Melting and solid–solid transitions of two-dimensional crystals composed of Janus spheres, T. Huang, Y. Han*, and Y. Chen*,
Soft Matter, 16, 3015 (2020)
[52]
Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives, Z. Wu, C. Ji, X. Zhao, Y. Han, K. Müllen, K. Pan, and M. Yin*,
J. Am. Chem. Soc.141, 7385 (2019)
[51]
Glass studies in colloidal systems, H. Zhang, Q. Zhang, F. Wang and Y. Han*, 物理 (Physics) 2019, 48(2): 69-81 (2019) (pdf)
[50]
Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals, F. Wang and Y. Han*, J. Chem. Phys. 150, 014504 (2019)
[49]
Compression-induced polycrystal-glass transition in binary crystals, H. Zhang and Y. Han*,
Phys. Rev. X 8, 041023 (2018)
[48]
Grain-boundary roughening in colloidal crystals, M. Liao, X. Xiao, S.T. Chui, and Y. Han*,
Phys. Rev. X 8, 021045 (2018)
[47]
Phase transition studies at the single-particle level using colloidal systems, F. Wang and Y. Han*,
物理 (Physics) 47, 238 (2018)
[46]
Homogeneous melting near the superheat limit of hard-sphere crystals, F. Wang, Z. Wang, Y. Peng, Z. Zheng, Y. Han*,
Soft Matter 14, 2447 (2018) (inside front cover)
[45]
Tunable colloidal crystalline patterns on flat and periodically micropatterned surfaces as antireflective layers and printable-erasable substrates, J.E. Song, J.S. Park, B. Lee, S.B. Pyun, J. Lee, M.G. Kim, Y. Han, and E.C. Cho,
Adv Mater Interfaces 1800138 (2018) (inside cover)
[44]
Release of free-volume bubbles by cooperative-rearrangement regions during the deposition growth of a colloidal glass, X.Cao, H. Zhang, and Y. Han*,
Nat. Commun. 8, 362 (2017)
[43]
Colloidal
diffusion over a quasicrystalline-patterned surface,
Y. Su, P.-Y. Lai, B. J. Ackerson, X. Cao, Y. Han, P. Tong*, J.
Chem. Phys. 146, 214903 (2017)
[4 2]
Glassy spin dynamics in geometrically frustrated buckled colloidal
crystals, D. Zhou, F. Wang, B. Li, X. Lou and Y. Han*,
Phys. Rev. X
7, 021030 (2017)
[41]*,
Y. Peng, W. Li, F. Wang, T. Still, A.G.
Yodh and Y. Han, Diffusive and martensitic nucleation kinetics
in solid-solid transitions of colloidal crystals, Nat. Commun. 8, 14978 (2017)
[40]Melting
of colloidal crystals, F. Wang, D. Zhou and Y. Han*,
Adv. Funct. Mater.
26,
8903–8919
(2016) (invited review).
[39]
Modes of
surface premelting in attractive colloidal crystals, B. Li, F. Wang, D. Zhou,
Y. Peng, R. Ni, and Y. Han*,
Nature,
531, 485 (2016).
[38] Assembly and phase transitions within colloidal
crystals (invited review), B. Li, D. Zhou and Y. Han*, Nature Reviews
Materials, 1, 15011 (2016)
(cover article)
arxiv:1603.05021
[37]
Non-classical nucleation in a solid-solid transition of confined hard spheres,
W. Qi, Y. Peng, Y. Han, R.K. Bowles, and M. Dijkstra*, Phys.
Rev. Lett. 115, 185701 (2015)
(Editor's Suggestion)
[36]
Ground-state phase-space structures of two-dimensional ±J spin glasses: A
network approach, X. Cao, F. Wang, and Y.
Han*, Phys. Rev. E, 91, 062135 (2015)
[35]
Direct observation of liquid nucleus growth in homogeneous melting of
colloidal crystals, Z. Wang, F. Wang, Y. Peng, and Y.
Han*, Nat. Commun. 6, 6942 (2015)
[34]
Two-step nucleation mechanisms in solid-solid phase transitions, Yi
Peng, Feng Wang, Ziren Wang,
Ahemd Alsayed, Zexin Zhang,
Arjun Yodh and Yilong Han*,
Nature Materials, 14, 101–108 (2015). (Focus Article
on the Cover) (Supplementary
information)
[33]
Structural signatures of dynamic heterogeneities in monolayers of colloidal
ellipsoids, Z. Zheng*, R. Ni, F. Wang, M. Dijkstra, Y.
Wang and Y. Han*, Nat. Commun.
5, 3829 (2014)
[32]
Buckled
colloidal monolayers connect geometric frustration in soft and
hard matter, Y. Shokef*, Y. Han, A. Souslov, A.G. Yodh and T.C.
Lubensky, Soft Matter, 9, 6565 (2013)
[31] Using colloids
to understand the dynamics of melting and crystallization, Y. Han*, 物理
(Physics) 42, 160-169, (2013)
[30]
Glass transitions in monolayers of colloidal ellipsoids, Z. Zheng* and
Y. Han*, AIP Conf. Proc. 1518, 153 (2013)
[29]
Homogeneous melting of 3D superheated colloidal crystals,
Z. Wang, F. Wang, Y. Peng, Z. Zheng, and Y.
Han*, AIP Conf. Proc. 1518, 432, (2013)
[28] Test of
the universal scaling law of diffusion in colloidal monolayers, X.
Ma, W. Chen, Z. Wang, Y. Peng, Y. Han, and P. Tong*, Phys.
Rev. Lett. 110, 078302 (2013)
[27]
Imaging the
homogenous nucleation during the melting of superheated colloidal crystals, Z. Wang, F. Wang, Y. Peng, Z. Zheng, and Y.
Han*, Science 338, 87
(2012)
pdf
[26]
Colloidal electroconvection in a thin horizontal cell. III. Interfacial and
transient patterns on electrodes, Y. Han* and D. Grier*,
J. Chem. Phys. 137, 014504 (2012)
[25] Self-similarity
of phase-space networks of frustrated spin models and lattice gas models, Y.
Peng, F. Wang, M. Wong, and Y. Han*, Phys. Rev. E 84,
051105 (2011)
[24] Melting of
microgel colloidal crystals, Y. Peng, Z.-R. Wang and Y. Han*, J.
Phys.: Conf. Ser. 319, 012010
(2011)
[23]
Glass transitions in quasi-two-dimensional suspensions of colloidal
ellipsoids, Z. Zheng, F. Wang and Y. Han*, Phys. Rev. Lett.
107, 065702 (2011) (highlighted by Editor's Suggestion and
Physics Viewpoint
)
[22] A. M. Alsayed, Y. Han and A. G. Yodh, Book Chapter 10 "Melting and
Geometric Frustration in Temperature-Sensitive Colloids" p229-281 in "Microgel
Suspensions, Fundamentals and Applications" WILEY-VCH, 2011.
[21] Melting of multilayer colloidal crystals confined between two
walls, Y. Peng, Z.-R. Wang, A. M. Alsayed, A. G. Yodh, and Y. Han*,
Phys. Rev. E 83, 011404 (2011)
[20] Two
features at the two-dimensional freezing transitions, Z.-R.
Wang, W. Qi, Y. Peng, A. M. Alsayed, Y. Chen, P. Tong, and Y. Han*,
J. Chem. Phys. 134,
034506 (2011)
[19] Melting in two-dimensional Yukawa systems: A Brownian dynamics
simulation, W. Qi, Z.-R. Wang, Y. Han*, and Y. Chen*,
J. Chem. Phys. 133, 234508 (2010)
[18]
Self-diffusion in
two-dimensional hard ellipsoid suspensions, Z. Zheng and Y. Han*, J. Chem. Phys.
133, 124509 (2010)
[17] Melting of
colloidal crystal films, Y. Peng, Z.-R. Wang,
A. Alsayed, A. G. Yodh, and Y. Han*, Phys. Rev. Lett. 104,
205703 (2010)
(featured by Physical Review Focus
)
[16]Two-dimensional
freezing criteria for crystallizing colloidal monolayers, Z.-R.
Wang, A. Alsayed, A. G. Yodh, and Y. Han*, J. Chem. Phys.
132, 154501 (2010)
[15]
Phase-space networks of the six-vertex model under different boundary
conditions, Y. Han*, Phys. Rev. E 81, 041118 (2010)
[14] Phase-space
networks of geometrically frustrated systems, Y. Han*,
Phys. Rev. E 80, 051102, (2009)
[13]
Quasi-two-dimensional diffusion of single ellipsoids: aspect ratio and
confinement effects, Y. Han*, A. M. Alsayed, M. Nobili and A. G. Yodh,
Phys. Rev. E 80, 011403 (2009)
[12] Particle Dynamics in Colloidal Suspensions Above and Below the Glass-Liquid
Re-entrance Transition, A. Latka, Y. Han, A. M. Alsayed, A. B. Schofield, A.
G. Yodh and P. Habdas*, Europhys. Lett. 86, 58001 (2009)
[11]
Geometric
frustration in buckled colloidal monolayers, Y. Han*, Y. Shokef*,
A. M. Alsayed, P. Yunker, T. C. Lubensky and A. G. Yodh, Nature
456, 898-903 (2008).
Supplementary Information
[10] Melting of two-dimensional
diameter tunable colloidal crystals, Y. Han*, N.
Y. Ha, A. M. Alsayed, and A. G. Yodh, Phys. Rev. E 77,
041406 (2008)
[9] Colloidal electrostatic
interactions near a conducting surface, M. Polin, D.
G. Grier, and Y. Han, Phys. Rev. E 76, 041406 (2007)
[8] Brownian
motion of an ellipsoid, Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C.
Lubensky, and A. G. Yodh, Science 314, 626-630 (2006).
Supporting
Online Materials
[7] Colloidal
electroconvection in a thin horizontal cell II: bulk electroconvection
of water during parallel-plate electrolysis, Y. Han and D. G. Grier, J.
Chem. Phys. 125, 144707 1-7, (2006)
[6] Colloidal Patterns in a Thin Electrolysis Cell I: microscopic cooperative
structures, Y. Han and D. G. Grier J. Chem. Phys. 122,
164701, 1-11 (2005)
[5]
Configurational
temperatures and interactions in charge-stabilized colloid,
Y. Han and D. G. Grier, J. Chem. Phys. 122, 064907, 1-14
(2005)
[4] Anomalous attractions in
confined charge-stabilized colloid, D. G. Grier and
Y. Han, J. Phys.- Condens. Matt. 16, S4145-S4157 (2004)
[3]
Configurational temperature of
charge-stabilized colloidal monolayer, Y. Han
and D. G. Grier, Phys. Rev. Lett. 92, 148301 (2004)
[2]
Confinement-induced
colloidal attractions in equilibrium, Y. Han and D. G. Grier,
Phys. Rev. Lett. 91, 038302 (2003)
[1]
Vortex
rings in a constant electric field, Y. Han and D. G. Grier,
Nature 424, 267-268 (2003);
erratum
Nature 424, 510 (2003)
*corresponding author
|