Main

Research

Image Gallery

Video Gallery

People

Publications

Press

Teaching

Contact

 

 

publication list in Google Scholar

[80] Nucleation kinetics and virtual melting in shear-induced structural transitions, W. Li, Y. Peng, T. Still, A. G. Yodh, and Y. Han*, Rep. Prog. Phys. 88 010501 (2025)
[79] Polymorphic crystalline layer at the crystallization front, M. Li, Z. Xu, Q. Zhang, W. Li, Y. Zhang, and Y. Han*, Phys. Rev. Lett. 133, 248202 (2024)
[78] Chiral active particles are sensitive reporters to environmental geometry, C.W. Chan, D. Wu, K.L. Fong, Z. Yang, Y. Han and R. Zhang*, Nat. Commun. 15, 1406 (2024)
[77] Anisotropic-isotropic transition of cages at the glass transition, H. Zhang*, Q. Zhang, F. Liu, and Y. Han*, Phys. Rev. Lett. 132, 078201 (2024)
[76] Searching for various melting scenarios of 2D crystals, P. Hua and Y. Han*, Matter 7, 19-22 (2024) (invited preview), arXiv:2410.11286
[75] Soft matter roadmap, J.L. Barrat,... Y. Han, et al. Journal of Physics: Materials 7, 012501 (2024) (invited review)
[74] Two modes of motions for a single disk on the vibration stage, L. Guan, L. Tian, M. Hou*, Y. Han*, Journal of Physics: Condensed Matter 36, 115102 (2024)
[73] In situ observation of nucleus coalescence in colloidal crystal-crystal transitions, Y. Peng*, W. Li, T. Still, A.G. Yodh, and Y. Han*, Nat. Commun. 14, 4905 (2023)
[72] Generalization of the Hall-Petch and inverse Hall-Petch behaviors by tuning amorphous regions in 2D solids, Z. Xu, M. Li, H. Zhang*, and Y. Han*, National Science Open 2, 20220058 (2023) (cover article)
[71] Polymorphic crystalline wetting layers on crystal surfaces, X.P. Wang*, B. Li*, M. Li, and Y. Han*, Nat. Phys. 19, 700 (2023)
[70] Surface premelting and melting of colloidal glasses, Q. Zhang, W. Li, K. Qiao, and Y. Han*, Sci. Adv. 9, eadf1101 (2023)
[69] Effects of size ratio on particle packing in binary glasses, H. Zhang*, C. Luo, Z. Zheng*, and Y. Han*, Acta Mater. 246, 118700 (2023)
[68] A regime beyond the Hall–Petch and inverse-Hall–Petch regimes in ultrafine-grained solids, H. Zhang*, F. Liu, G. Ungar, Z. Zheng, Q. Sun, and Y. Han*, Commun. Phys. 5, 329 (2022)
[67] Shear-induced amorphization in nanocrystalline NiTi micropillars under large plastic deformation, P. Hua, B. Wang, C. Yu, Y. Han, and Q. Sun*, Acta Mater. 241, 118358 (2022)
[66] Morphologies and dynamics of free surfaces of crystals composed of active particles, G. Xu, T. Huang, Y. Han*, and Y. Chen*, Soft Matter 18, 8830 (2022)
[65] Internal-stress-induced solid-solid transition involving orientational domains of anisotropic particles, T. Huang, C. Zeng*, H. Wang, Y. Chen, and Y. Han*, Phys. Rev. E 106, 014612 (2022)
[64] Hydrodynamic couplings of colloidal ellipsoids diffusing in channels, Z. Zheng, X. Xu, Y. Wang, and Y. Han*, J. Fluid. Mech. 933, A40 (2022)
[63] Mean-field model of melting in superheated crystals based on a single experimentally measurable order parameter, N. P. Kryuchkov, N. A. Dmitryuk, W. Li, P. V. Ovcharov, Y. Han, A. V. Sapelkin, and S. O. Yurchenko*, Sci. Rep. 11, 17963 (2021)
[62] Morphologies and dynamics of the interfaces between active and passive phases, G. Xu, T. Huang, Y. Han*, Y. Chen*, Soft Matter 17, 9607 (2021)
[61] Dynamics of a vibration-driven single disk, L. Guan, L. Tian, M. Hou, and Y. Han*, Sci. Rep. 11 16561 (2021)
[60] Book chapters (“Introduction”, “Melting” and “Solid-solid transition”) in a Chinese book “胶体中的相变和自组装 Phase transitions and self-assembly in colloids”, Y. Han, May, 2021 科学出版社 Science Press
[59] Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers, Z. Zheng, R. Ni, Y. Wang* and Y. Han*, Sci. Adv. 7, eabd1958 (2021)
[58] Surface roughening, premelting and melting of monolayer and bilayer crystals, X. Wang, B. Li, X. Xu* and Y. Han*, Soft Matter 17, 688 (2021)
[57] Direct evidence of void-induced structural relaxations in colloidal glass formers, C. T. Yip, M. Isobe, C.-H. Chan, S. Ren, K.-P. Wong, Q. Huo, C.-S. Lee, Y.-H. Tsang, Y. Han, and C.-H. Lam*, Phys. Rev. Lett. 125, 258001 (2020)
[56] Shear-assisted grain coarsening in colloidal polycrystals, W. Li, Y. Peng, Y. Zhang, T. Still, A.G. Yodh, and Y. Han*, PNAS, 117, 24055 (2020)
[55] Power laws in pressure-induced structural change of glasses, H. Zhang, K. Qiao, and Y. Han*, Nat. Commun. 11, 2005 (2020)
[54] Seeing crystal formation one particle at a time, Y. Han*, Nat. Mater. 19, 377 (2020)
[53] Melting and solid–solid transitions of two-dimensional crystals composed of Janus spheres, T. Huang, Y. Han*, and Y. Chen*, Soft Matter, 16, 3015 (2020)
[52] Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives, Z. Wu, C. Ji, X. Zhao, Y. Han, K. Müllen, K. Pan, and M. Yin*, J. Am. Chem. Soc.141, 7385 (2019)
[51] Glass studies in colloidal systems, H. Zhang, Q. Zhang, F. Wang and Y. Han*, 物理 (Physics) 2019, 48(2): 69-81 (2019) (pdf)
[50] Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals, F. Wang and Y. Han*, J. Chem. Phys., 150, 014504 (2019)
[49] Compression-induced polycrystal-glass transition in binary crystals, H. Zhang and Y. Han*, Phys. Rev. X, 8, 041023 (2018)
[48] Grain-boundary roughening in colloidal crystals, M. Liao, X. Xiao, S.T. Chui, and Y. Han*, Phys. Rev. X 8, 021045 (2018)
[47] Phase transition studies at the single-particle level using colloidal systems, F. Wang and Y. Han*, 物理 (Physics) 47, 238 (2018)
[46] Homogeneous melting near the superheat limit of hard-sphere crystals, F. Wang, Z. Wang, Y. Peng, Z. Zheng, Y. Han*, Soft Matter 14, 2447 (2018) (inside front cover)
[45] Tunable colloidal crystalline patterns on flat and periodically micropatterned surfaces as antireflective layers and printable-erasable substrates, J.E. Song, J.S. Park, B. Lee, S.B. Pyun, J. Lee, M.G. Kim, Y. Han, and E.C. Cho, Adv Mater Interfaces, 1800138 (2018) (inside cover)
[44] Release of free-volume bubbles by cooperative-rearrangement regions during the deposition growth of a colloidal glass, X.Cao, H. Zhang, and Y. Han*, Nat. Commun., 8, 362 (2017)
[43] Colloidal diffusion over a quasicrystalline-patterned surface, Y. Su, P.-Y. Lai, B. J. Ackerson, X. Cao, Y. Han, P. Tong**, J. Chem. Phys. 146, 214903 (2017)
[4
2] Glassy spin dynamics in geometrically frustrated buckled colloidal crystals, D. Zhou, F. Wang, B. Li, X. Lou and Y. Han*, Phys. Rev. X, 7, 021030 (2017)
[41]Y. Peng, W. Li, F. Wang, T. Still, A.G. Yodh and Y. Han*, Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals, Nat. Commun., 8, 14978 (2017)
[
40]Melting of colloidal crystals, F. Wang, D. Zhou and Y. Han*, Adv. Funct. Mater. 26, 8903–8919 (2016) (invited review).
[39] Modes of surface premelting in attractive colloidal crystals, B. Li, F. Wang, D. Zhou, Y. Peng, R. Ni, and Y. Han*,
Nature, 531, 485 (2016).
[38] 
Assembly and phase transitions within colloidal crystals (invited review), B. Li, D. Zhou and Y. Han*,  Nature Reviews Materials, 1, 15011 (2016)  (cover article) arxiv:1603.05021
[37] Non-classical nucleation in a solid-solid transition of confined hard spheres, W. Qi, Y. Peng, Y. Han, R.K. Bowles, and M. Dijkstra*, Phys. Rev. Lett. 115, 185701 (2015) (Editor's Suggestion)
[36] Ground-state phase-space structures of two-dimensional ±J spin glasses: A network approach, X. Cao, F. Wang, and Y. Han*, Phys. Rev. E,  91, 062135 (2015)
[35] Direct observation of liquid nucleus growth in homogeneous melting of colloidal crystals, Z. Wang, F. Wang, Y. Peng, and Y. Han*, Nat. Commun., 6, 6942 (2015)
[34] Two-step nucleation mechanisms in solid-solid phase transitions, Yi Peng, Feng Wang, Ziren Wang, Ahemd Alsayed, Zexin Zhang, Arjun Yodh and Yilong Han*, Nature Materials, 14, 101–108 (2015). (Focus Article on the Cover) (Supplementary information)
[33] Structural signatures of dynamic heterogeneities in monolayers of colloidal ellipsoids, Z. Zheng*, R. Ni, F. Wang, M. Dijkstra, Y. Wang and Y. Han*, Nat. Commun., 5, 3829 (2014)
[32] Buckled colloidal monolayers connect geometric frustration in soft and hard matter, Y. Shokef*, Y. Han, A. Souslov, A.G. Yodh and T.C. Lubensky, Soft Matter, 9, 6565 (2013)
[31] Using colloids to understand the dynamics of melting and crystallization, Y. Han*, 物理 (Physics) 42, 160-169, (2013)
[30] Glass transitions in monolayers of colloidal ellipsoids, Z. Zheng* and Y. Han*, AIP Conf. Proc. 1518, 153 (2013)
[29] Homogeneous melting of 3D superheated colloidal crystals, Z. Wang, F. Wang, Y. Peng, Z. Zheng, and Y. Han*, AIP Conf. Proc. 1518, 432, (2013)
[28] Test of the universal scaling law of diffusion in colloidal monolayers, X. Ma, W. Chen, Z. Wang, Y. Peng, Y. Han, and P. Tong*, Phys. Rev. Lett. 110, 078302 (2013)
[27] Imaging the homogenous nucleation during the melting of superheated colloidal crystals, Z. Wang, F. Wang, Y. Peng, Z. Zheng, and Y. Han*, Science 338, 87 (2012) pdf
[26] Colloidal electroconvection in a thin horizontal cell. III. Interfacial and transient patterns on electrodes, Y. Han* and D. Grier*,  J. Chem. Phys. 137, 014504 (2012)
[25] Self-similarity of phase-space networks of frustrated spin models and lattice gas models, Y. Peng, F. Wang, M. Wong, and Y. Han*, Phys. Rev. E 84, 051105 (2011)
[24] Melting of microgel colloidal crystals, Y. Peng, Z.-R. Wang and Y. Han*, J. Phys.: Conf. Ser. 319, 012010
(2011)
[23] Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids, Z. Zheng, F. Wang and Y. Han*, Phys. Rev. Lett. 107, 065702 (2011) (highlighted by Editor's Suggestion and Physics Viewpoint )
[22] A. M. Alsayed, Y. Han and A. G. Yodh, Book Chapter 10 "Melting and Geometric Frustration in Temperature-Sensitive Colloids" p229-281 in "Microgel Suspensions, Fundamentals and Applications" WILEY-VCH, 2011.
[21] Melting of multilayer colloidal crystals confined between two walls, Y. Peng, Z.-R. Wang, A. M. Alsayed, A. G. Yodh, and Y. Han*,  Phys. Rev. E  83, 011404 (2011)
[20] Two features at the two-dimensional freezing transitions, Z.-R. Wang, W. Qi, Y. Peng, A. M. Alsayed, Y. Chen, P. Tong, and Y. Han*, J. Chem. Phys.  134, 034506 (2011)
[19] Melting in two-dimensional Yukawa systems: A Brownian dynamics simulation, W. Qi, Z.-R. Wang, Y. Han*, and Y. Chen*, J. Chem. Phys. 133, 234508 (2010)
[18] Self-diffusion in two-dimensional hard ellipsoid suspensions, Z. Zheng and Y. Han*, J. Chem. Phys. 133, 124509 (2010)
[17] Melting of  colloidal crystal films, Y. Peng, Z.-R. Wang, A. Alsayed, A. G. Yodh, and Y. Han*, Phys. Rev. Lett. 104, 205703 (2010) (featured by Physical Review Focus )
[16] Two-dimensional freezing criteria for crystallizing colloidal monolayers, Z.-R. Wang, A. Alsayed, A. G. Yodh, and Y. Han*,  J. Chem. Phys. 132, 154501 (2010)
[15] Phase-space networks of the six-vertex model under different boundary conditions, Y. Han*, Phys. Rev. E 81, 041118 (2010)
[14] Phase-space networks of geometrically frustrated systems, Y. Han*, Phys. Rev. E  80, 051102, (2009)
[13] Quasi-two-dimensional diffusion of single ellipsoids: aspect ratio and confinement effects, Y. Han*, A. M. Alsayed, M. Nobili and A. G. Yodh  Phys. Rev. E  80, 011403 (2009)
[12] Particle Dynamics in Colloidal Suspensions Above and Below the Glass-Liquid Re-entrance Transition, A. Latka, Y. Han, A. M. Alsayed, A. B. Schofield, A. G. Yodh and P. Habdas*  Europhys. Lett. 86, 58001 (2009)
[11] Geometric frustration in buckled colloidal monolayers, Y. Han*, Y. Shokef*, A. M. Alsayed, P. Yunker, T. C. Lubensky and A. G. Yodh Nature 456, 898-903 (2008). Supplementary Information
[10] Melting of two-dimensional diameter tunable colloidal crystals, Y. Han*, N. Y. Ha, A. M. Alsayed, and A. G. Yodh  Phys. Rev. E  77, 041406 (2008)
[9] Colloidal electrostatic interactions near a conducting surface, M. Polin, D. G. Grier, and Y. Han Phys. Rev. E  76, 041406 (2007)
[8] Brownian motion of an ellipsoid, Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh  Science 314, 626-630 (2006). Supporting Online Materials
[7]  Colloidal electroconvection in a thin horizontal cell II: bulk electroconvection of water during parallel-plate electrolysis, Y. Han and D. G. Grier J. Chem. Phys. 125, 144707 1-7, (2006)
[6] Colloidal Patterns in a Thin Electrolysis Cell I: microscopic cooperative structures, Y. Han and D. G. Grier  J. Chem. Phys. 122, 164701, 1-11 (2005)
[5] Configurational temperatures and interactions in charge-stabilized colloid, Y. Han and D. G. Grier  J. Chem. Phys. 122, 064907, 1-14 (2005)
[4] Anomalous attractions in confined charge-stabilized colloid, D. G. Grier and Y. Han J. Phys.- Condens. Matt. 16, S4145-S4157 (2004)
[3] Configurational temperature of charge-stabilized colloidal monolayer, Y. Han and D. G. Grier  Phys. Rev. Lett. 92, 148301 (2004)
[2] Confinement-induced colloidal attractions in equilibrium, Y. Han and D. G. Grier Phys. Rev. Lett. 91, 038302 (2003)
[1] Vortex rings in a constant electric field, Y. Han and D. G. Grier  Nature 424, 267-268 (2003); erratum Nature 424, 510 (2003)

*corresponding author