|  |   | publication list in Google Scholar 
[83] 
 
Percolation transition in entangled granular networks, S. Kim, D. Wu and  Y. Han*,
  Nat. Commun. in press (arxiv 2509.00216) (2025)2] 
		
		Glassy spin dynamics in geometrically frustrated buckled colloidal 
crystals, D. Zhou, F. Wang, B. Li, X. Lou and Y. Han*, 
		
		Phys. Rev. X 
7, 021030 (2017)[82] 
 
Mechanical properties of crystalline-amorphous
composites: generalization of Hall–Petch and
inverse Hall–Petch behaviors, Z. Xu, M. Li and  Y. Han*,
 National Science Review  12, nwaf336 (2025)
 [81] 
 
Distinguishable-particle glassy crystal: the simplest molecular model of glass, L.S.I. Lam, G. Gopinath, Z. Zhao, S. Wang, C.-S. Lee, H.-Y. Deng, F. Wang, Y. Han, C.-T. Yip*, and C.-H. Lam*,
 J. Chem. Phys.   163, 024505  (2025)
 [80] 
 
Nucleation kinetics and virtual melting in shear-induced structural transitions, W. Li, Y. Peng, T. Still, A. G. Yodh, and Y. Han*,
 Rep. Prog. Phys.    88, 010501 (2025)
(highlighted by 
		Physics World)
 [79] 
 
Polymorphic crystalline layer at the crystallization front, M. Li, Z. Xu, Q. Zhang, W. Li, Y. Zhang, and Y. Han*,
 Phys. Rev. Lett.   133, 248202 (2024) (highlighted by 
		synopsis in APS Physics)
 [78] 
 Chiral active particles are sensitive reporters to environmental geometry, C.W. Chan, D. Wu, K. Qiao, K.L. Fong, Z. Yang, Y. Han and R. Zhang*,
 Nat. Commun.    15, 1406 (2024)
 [77] 
 Anisotropic-isotropic transition of cages at the glass transition, H. Zhang*, Q. Zhang, F. Liu, and Y. Han*,
 Phys. Rev. Lett.    132, 078201 (2024)
 [76] 
 Searching for various melting scenarios of 2D crystals, P. Hua and Y. Han*, 
 Matter   7, 19-22 (2024) (invited preview), 
 arXiv:2410.11286
 [75] 
 Soft matter roadmap,  J.L. Barrat,... Y. Han, et al. 
 Journal of Physics: Materials  7, 012501 (2024) (invited review)
 [74] 
 Two modes of motions for a single disk on the vibration stage,  L. Guan, L. Tian, M. Hou*, Y. Han*, 
 Journal of Physics: Condensed Matter  36, 115102 (2024)
 [73] 
 In situ observation of nucleus coalescence in colloidal crystal-crystal transitions, Y. Peng*, W. Li, T. Still, A.G. Yodh, and Y. Han*,
 Nat. Commun.   14, 4905 (2023)
 [72] 
 Generalization of the Hall-Petch and inverse Hall-Petch behaviors by tuning amorphous regions in 2D solids, Z. Xu, M. Li, H. Zhang*, and Y. Han*,
 National Science Open 2, 20220058 (2023) (cover article)
 [71] 
 Polymorphic crystalline wetting layers on crystal surfaces, X.P. Wang*, B. Li*, M. Li, and Y. Han*,
 Nat. Phys. 19, 700 (2023)
 [70] 
 Surface premelting and melting of colloidal glasses, Q. Zhang, W. Li, K. Qiao, and Y. Han*,
 Sci. Adv. 9, eadf1101 (2023)
 [69] 
 
 Effects of size ratio on particle packing in binary glasses, H. Zhang*, C. Luo, Z. Zheng*, and Y. Han*,
 Acta Mater. 246, 118700 (2023)
 [68] 
 A regime beyond the Hall–Petch and inverse-Hall–Petch regimes in ultrafine-grained solids, H. Zhang*, F. Liu, G. Ungar, Z. Zheng, Q. Sun, and Y. Han*,
 Commun. Phys. 5, 329 (2022)
 [67] 
 Shear-induced amorphization in nanocrystalline NiTi micropillars under large plastic deformation, P. Hua, B. Wang, C. Yu, Y. Han, and Q. Sun*,
 Acta Mater. 241, 118358 (2022)
 [66] 
 Morphologies and dynamics of free surfaces of crystals composed of active particles, G. Xu, T. Huang, Y. Han*, and Y. Chen*,
 Soft Matter 18, 8830 (2022)
 [65] 
 Internal-stress-induced solid-solid transition involving orientational domains of anisotropic particles, T. Huang, C. Zeng*, H. Wang, Y. Chen, and Y. Han*,
 Phys. Rev. E 106, 014612 (2022)
 [64] 
 Hydrodynamic couplings of colloidal ellipsoids diffusing in channels, Z. Zheng, X. Xu, Y. Wang, and Y. Han*,
 J. Fluid. Mech. 933, A40 (2022)
 [63] 
 Mean-field model of melting in superheated crystals based on a single experimentally measurable order parameter, N. P. Kryuchkov, N. A. Dmitryuk, W. Li, P. V. Ovcharov, Y. Han, A. V. Sapelkin, and S. O. Yurchenko*,
 Sci. Rep. 11, 17963 (2021)
 [62] 
 Morphologies and dynamics of the interfaces between active and passive phases, G. Xu, T. Huang, Y. Han*, Y. Chen*,
 Soft Matter 17, 9607 (2021)
 [61] 
 Dynamics of a vibration-driven single disk, L. Guan, L. Tian, M. Hou, and Y. Han*,
 Sci. Rep. 11 16561 (2021)
 [60] 
Book chapters (“Introduction”, “Melting” and “Solid-solid transition”) in a Chinese book “胶体中的相变和自组装 Phase transitions and self-assembly in colloids”, Y. Han, 
 May, 2021 科学出版社 Science Press
 [59] 
 Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers, Z. Zheng, R. Ni, Y. Wang* and Y. Han*,
 Sci. Adv. 7, eabd1958 (2021)
 [58] 
 Surface roughening, premelting and melting of monolayer and bilayer crystals, X. Wang, B. Li, X. Xu* and Y. Han*,
Soft Matter 17, 688 (2021)
 [57] 
 Direct evidence of void-induced structural relaxations in colloidal glass formers, C. T. Yip, M. Isobe, C.-H. Chan, S. Ren, K.-P. Wong, Q. Huo, C.-S. Lee, Y.-H. Tsang, Y. Han, and C.-H. Lam*,
Phys. Rev. Lett. 125, 258001 (2020)
 [56] 
 Shear-assisted grain coarsening in colloidal polycrystals, W. Li, Y. Peng, Y. Zhang, T. Still, A.G. Yodh, and Y. Han*, PNAS, 117, 24055 (2020)
 [55] 
 Power laws in pressure-induced structural change of glasses, H. Zhang, K. Qiao, and Y. Han*, Nat. Commun. 11, 2005 (2020)
 [54] 
 Seeing crystal formation one particle at a time, Y. Han*, Nat. Mater. 19, 377 (2020)
 [53] 
 Melting and solid–solid transitions of two-dimensional crystals composed of Janus spheres, T. Huang, Y. Han*, and Y. Chen*, 
Soft Matter, 16, 3015 (2020)
 [52] 
Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives, Z. Wu, C. Ji, X. Zhao, Y. Han, K. Müllen, K. Pan, and M. Yin*, 
J. Am. Chem. Soc.141, 7385 (2019)
 [51] 
Glass studies in colloidal systems, H. Zhang, Q. Zhang, F. Wang and Y. Han*, 物理 (Physics)  2019, 48(2): 69-81 (2019) (pdf)
 [50] 
Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals, F. Wang and Y. Han*, J. Chem. Phys. 150, 014504 (2019)
 [49] 
Compression-induced polycrystal-glass transition in binary crystals, H. Zhang and Y. Han*, 
Phys. Rev. X 8, 041023 (2018)
 [48] 
Grain-boundary roughening in colloidal crystals, M. Liao, X. Xiao, S.T. Chui, and Y. Han*, 
Phys. Rev. X 8, 021045 (2018)
 [47] 
Phase transition studies at the single-particle level using colloidal systems, F. Wang and Y. Han*, 
物理 (Physics) 47, 238 (2018)
 [46] 
Homogeneous melting near the superheat limit of hard-sphere crystals, F. Wang, Z. Wang, Y. Peng, Z. Zheng, Y. Han*, 
Soft Matter 14, 2447 (2018) (inside front cover)
 [45] 
Tunable colloidal crystalline patterns on flat and periodically micropatterned surfaces as antireflective layers and printable-erasable substrates, J.E. Song, J.S. Park,  B. Lee, S.B. Pyun, J. Lee, M.G. Kim, Y. Han, and E.C. Cho, 
Adv Mater Interfaces 1800138 (2018) (inside cover)
 [44] 
Release of free-volume bubbles by cooperative-rearrangement regions during the deposition growth of a colloidal glass, X.Cao, H. Zhang, and Y. Han*, 
Nat. Commun. 8, 362 (2017)
 [43]
Colloidal 
diffusion over a quasicrystalline-patterned surface,
Y. Su, P.-Y. Lai, B. J. Ackerson, X. Cao, Y. Han, P. Tong*, J. 
Chem. Phys. 146, 214903 (2017)
 [4
 [41]*, 
Y. Peng, W. Li, F. Wang, T. Still, A.G. 
Yodh and Y. Han, Diffusive and martensitic nucleation kinetics 
in solid-solid transitions of colloidal crystals, Nat. Commun. 8, 14978 (2017)
 [40]Melting 
of colloidal crystals, F. Wang, D. Zhou and Y. Han*, 
Adv. Funct. Mater.
26,
 8903–8919 
(2016) (invited review).
 [39] 
Modes of 
surface premelting in attractive colloidal crystals, B. Li, F. Wang, D. Zhou, 
Y. Peng, R. Ni, and Y. Han*, 
Nature, 
531, 485 (2016).
 [38] Assembly and phase transitions within colloidal 
crystals (invited review), B. Li, D. Zhou and Y. Han*,  Nature Reviews 
Materials, 1, 15011 (2016)
		 (cover article)
arxiv:1603.05021
 [37]
Non-classical nucleation in a solid-solid transition of confined hard spheres, 
W. Qi, Y. Peng, Y. Han, R.K. Bowles, and M. Dijkstra*, Phys. 
Rev. Lett. 115, 185701 (2015) 
		
		(Editor's Suggestion)
 [36] 
Ground-state phase-space structures of two-dimensional ±J spin glasses: A 
network approach, X. Cao, F. Wang, and Y. 
		Han*, Phys. Rev. E,  91, 062135 (2015)
 [35] 
Direct observation of liquid nucleus growth in homogeneous melting of 
		colloidal crystals, Z. Wang, F. Wang, Y. Peng, and Y. 
		Han*, Nat. Commun. 6, 6942 (2015)
 [34] 
Two-step nucleation mechanisms in solid-solid phase transitions, Yi 
Peng, Feng Wang, Ziren Wang, 
Ahemd Alsayed, Zexin Zhang, 
Arjun Yodh and Yilong Han*,
Nature Materials, 14, 101–108 (2015). (Focus Article 
on the Cover) (Supplementary 
information)
 [33]
Structural signatures of dynamic heterogeneities in monolayers of colloidal 
ellipsoids, Z. Zheng*, R. Ni, F. Wang, M. Dijkstra, Y. 
Wang and Y. Han*, Nat. Commun. 
5, 3829 (2014)
 [32] 
Buckled 
colloidal monolayers connect geometric frustration in soft and 
hard matter, Y. Shokef*, Y. Han, A. Souslov, A.G. Yodh and T.C. 
Lubensky, Soft Matter, 9, 6565 (2013)
 [31] Using colloids 
to understand the dynamics of melting and crystallization, Y. Han*, 物理 
(Physics) 42, 160-169, (2013)
 [30]
Glass transitions in monolayers of colloidal ellipsoids, Z. Zheng* and 
Y. Han*, AIP Conf. Proc. 1518, 153 (2013)
 [29]
Homogeneous melting of 3D superheated colloidal crystals,
Z. Wang, F. Wang, Y. Peng, Z. Zheng, and Y. 
Han*,  AIP Conf. Proc. 1518, 432, (2013)
 [28] Test of 
the universal scaling law of diffusion in colloidal monolayers, X. 
Ma, W. Chen, Z. Wang, Y. Peng, Y. Han, and P. Tong*, Phys. 
Rev. Lett. 110, 078302 (2013)
 [27]
        
Imaging the 
homogenous nucleation during the melting of superheated colloidal crystals,  Z. Wang, F. Wang, Y. Peng, Z. Zheng, and Y. 
Han*,  Science 338, 87 
(2012)
pdf
 [26] 
Colloidal electroconvection in a thin horizontal cell. III. Interfacial and 
transient patterns on electrodes,  Y. Han* and D. Grier*,   
		J. Chem. Phys. 137, 014504 (2012)
 [25] Self-similarity 
of phase-space networks of frustrated spin models and lattice gas models, Y. 
Peng, F. Wang, M. Wong, and Y. Han*, Phys. Rev. E 84, 
051105 (2011)
 [24] Melting of 
microgel colloidal crystals, Y. Peng, Z.-R. Wang and Y. Han*, J. 
Phys.: Conf. Ser. 319, 012010 
(2011)
 [23]
		
		Glass transitions in quasi-two-dimensional suspensions of colloidal 
        ellipsoids, Z. Zheng, F. Wang and Y. Han*, Phys. Rev. Lett. 
        107, 065702 (2011) (highlighted by Editor's Suggestion and
        
        Physics Viewpoint
        )
 [22] A. M. Alsayed, Y. Han and A. G. Yodh, Book Chapter 10 "Melting and 
		Geometric Frustration in Temperature-Sensitive Colloids" p229-281 in "Microgel 
		Suspensions, Fundamentals and Applications" WILEY-VCH, 2011.
 [21] Melting of multilayer colloidal crystals confined between two 
        walls, Y. Peng, Z.-R. Wang, A. M. Alsayed, A. G. Yodh, and Y. Han*,  
		Phys. Rev. E  83, 011404 (2011)
 [20] Two 
features at the two-dimensional freezing transitions, Z.-R. 
        Wang, W. Qi, Y. Peng, A. M. Alsayed, Y. Chen, P. Tong, and Y. Han*,  
		J. Chem. Phys.  134, 
        034506 (2011)
 [19] Melting in two-dimensional Yukawa systems: A Brownian dynamics 
		simulation, W. Qi, Z.-R. Wang, Y. Han*, and Y. Chen*, 
		J. Chem. Phys.  133, 234508 (2010)
 [18]
        Self-diffusion in 
        two-dimensional hard ellipsoid suspensions, Z. Zheng and Y. Han*, J. Chem. Phys. 
        133, 124509 (2010)
 [17] Melting of  
colloidal crystal films, Y. Peng, Z.-R. Wang, 
        A. Alsayed, A. G. Yodh, and Y. Han*, Phys. Rev. Lett. 104, 
		205703 (2010)
		(featured by Physical Review Focus
  ) [16]Two-dimensional 
        freezing criteria for crystallizing colloidal monolayers, Z.-R. 
        Wang, A. Alsayed, A. G. Yodh, and Y. Han*,  J. Chem. Phys.
         
        132, 154501 (2010)
 [15] 
        Phase-space networks of the six-vertex model under different boundary 
        conditions, Y. Han*, Phys. Rev. E 81, 041118 (2010)
 [14] Phase-space 
networks of geometrically frustrated systems, Y. Han*, 
Phys. Rev. E  80, 051102, (2009)
 [13] 
Quasi-two-dimensional diffusion of single ellipsoids: aspect ratio and 
confinement effects, Y. Han*, A. M. Alsayed, M. Nobili and A. G. Yodh, 
Phys. Rev. E  80, 011403 (2009)
 [12] Particle Dynamics in Colloidal Suspensions Above and Below the Glass-Liquid 
Re-entrance Transition, A. Latka, Y. Han, A. M. Alsayed, A. B. Schofield, A. 
G. Yodh and P. Habdas*,  Europhys. Lett. 86, 58001 (2009)
 [11]
Geometric 
frustration in buckled colloidal monolayers, Y. Han*, Y. Shokef*, 
A. M. Alsayed, P. Yunker, T. C. Lubensky and A. G. Yodh, Nature 
456, 898-903 (2008).
Supplementary Information
 [10] Melting of two-dimensional 
diameter tunable colloidal crystals, Y. Han*, N. 
Y. Ha, A. M. Alsayed, and A. G. Yodh,  Phys. Rev. E  77, 
041406 (2008)
 [9] Colloidal electrostatic 
interactions near a conducting surface, M. Polin, D. 
G. Grier, and Y. Han, Phys. Rev. E  76, 041406 (2007)
 [8] Brownian 
motion of an ellipsoid, Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. 
Lubensky, and A. G. Yodh,  Science 314, 626-630 (2006).
Supporting 
Online Materials
 [7]  Colloidal 
electroconvection in a thin horizontal cell II: bulk electroconvection 
of water during parallel-plate electrolysis, Y. Han and D. G. Grier, J. 
Chem. Phys. 125, 144707 1-7, (2006)
 [6] Colloidal Patterns in a Thin Electrolysis Cell I: microscopic cooperative 
structures, Y. Han and D. G. Grier  J. Chem. Phys. 122, 
164701, 1-11 (2005)
 [5]
Configurational 
temperatures and interactions in charge-stabilized colloid, 
Y. Han and D. G. Grier,  J. Chem. Phys. 122, 064907, 1-14 
(2005)
 [4] Anomalous attractions in 
confined charge-stabilized colloid, D. G. Grier and 
Y. Han, J. Phys.- Condens. Matt. 16, S4145-S4157 (2004)
 [3] 
Configurational temperature of 
charge-stabilized colloidal monolayer, Y. Han 
and D. G. Grier,  Phys. Rev. Lett. 92, 148301 (2004)
 [2] 
Confinement-induced 
colloidal attractions in equilibrium, Y. Han and D. G. Grier,
Phys. Rev. Lett. 91, 038302 (2003)
 [1] 
Vortex 
rings in a constant electric field, Y. Han and D. G. Grier, 
Nature 424, 267-268 (2003); 
 erratum 
Nature 424, 510 (2003)
 *corresponding author |