Main

Research

Image Gallery

Video Gallery

People

Publications

Press

Teaching

Contact

 

 

publication list in Google Scholar

[80] Nucleation kinetics and virtual melting in shear-induced structural transitions, W. Li, Y. Peng, T. Still, A. G. Yodh, and Y. Han* Rep. Prog. Phys. in press
[79] Polymorphic crystalline layer at the crystallization front, M. Li, Z. Xu, Q. Zhang, W. Li, Y. Zhang, and Y. Han* Phys. Rev. Lett. in press
[78] Chiral active particles are sensitive reporters to environmental geometry, C.W. Chan, D. Wu, K.L. Fong, Z. Yang, Y. Han and R. Zhang*, Nat. Commun. 15, 1406 (2024)
[77] Anisotropic-isotropic transition of cages at the glass transition, H. Zhang*, Q. Zhang, F. Liu, and Y. Han*, Phys. Rev. Lett. 132, 078201 (2024)
[76] Searching for various melting scenarios of 2D crystals, P. Hua and Y. Han*, Matter 7, 19-22 (2024) (invited preview), arXiv:2410.11286
[75] Soft matter roadmap, J.L. Barrat,... Y. Han, et al. Journal of Physics: Materials 7, 012501 (2024) (invited review)
[74] Two modes of motions for a single disk on the vibration stage, L. Guan, L. Tian, M. Hou*, Y. Han*, Journal of Physics: Condensed Matter 36, 115102 (2024)
[73] In situ observation of nucleus coalescence in colloidal crystal-crystal transitions, Y. Peng*, W. Li, T. Still, A.G. Yodh, and Y. Han*, Nat. Commun. 14, 4905 (2023)
[72] Generalization of the Hall-Petch and inverse Hall-Petch behaviors by tuning amorphous regions in 2D solids, Z. Xu, M. Li, H. Zhang*, and Y. Han*, National Science Open 2, 20220058 (2023) (cover article)
[71] Polymorphic crystalline wetting layers on crystal surfaces, X.P. Wang*, B. Li*, M. Li, and Y. Han*, Nat. Phys. 19, 700 (2023)
[70] Surface premelting and melting of colloidal glasses, Q. Zhang, W. Li, K. Qiao, and Y. Han*, Sci. Adv. 9, eadf1101 (2023)
[69] Effects of size ratio on particle packing in binary glasses, H. Zhang*, C. Luo, Z. Zheng*, and Y. Han*, Acta Mater. 246, 118700 (2023)
[68] A regime beyond the Hall–Petch and inverse-Hall–Petch regimes in ultrafine-grained solids, H. Zhang*, F. Liu, G. Ungar, Z. Zheng, Q. Sun, and Y. Han*, Commun. Phys. 5, 329 (2022)
[67] Shear-induced amorphization in nanocrystalline NiTi micropillars under large plastic deformation, P. Hua, B. Wang, C. Yu, Y. Han, and Q. Sun*, Acta Mater. 241, 118358 (2022)
[66] Morphologies and dynamics of free surfaces of crystals composed of active particles, G. Xu, T. Huang, Y. Han*, and Y. Chen*, Soft Matter 18, 8830 (2022)
[65] Internal-stress-induced solid-solid transition involving orientational domains of anisotropic particles, T. Huang, C. Zeng*, H. Wang, Y. Chen, and Y. Han*, Phys. Rev. E 106, 014612 (2022)
[64] Hydrodynamic couplings of colloidal ellipsoids diffusing in channels, Z. Zheng, X. Xu, Y. Wang, and Y. Han*, J. Fluid. Mech. 933, A40 (2022)
[63] Mean-field model of melting in superheated crystals based on a single experimentally measurable order parameter, N. P. Kryuchkov, N. A. Dmitryuk, W. Li, P. V. Ovcharov, Y. Han, A. V. Sapelkin, and S. O. Yurchenko*, Sci. Rep. 11, 17963 (2021)
[62] Morphologies and dynamics of the interfaces between active and passive phases, G. Xu, T. Huang, Y. Han*, Y. Chen*, Soft Matter 17, 9607 (2021)
[61] Dynamics of a vibration-driven single disk, L. Guan, L. Tian, M. Hou, and Y. Han*, Sci. Rep. 11 16561 (2021)
[60] Book chapters (“Introduction”, “Melting” and “Solid-solid transition”) in a Chinese book “胶体中的相变和自组装 Phase transitions and self-assembly in colloids”, Y. Han, May, 2021 科学出版社 Science Press
[59] Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers, Z. Zheng, R. Ni, Y. Wang* and Y. Han*, Sci. Adv. 7, eabd1958 (2021)
[58] Surface roughening, premelting and melting of monolayer and bilayer crystals, X. Wang, B. Li, X. Xu* and Y. Han*, Soft Matter 17, 688 (2021)
[57] Direct evidence of void-induced structural relaxations in colloidal glass formers, C. T. Yip, M. Isobe, C.-H. Chan, S. Ren, K.-P. Wong, Q. Huo, C.-S. Lee, Y.-H. Tsang, Y. Han, and C.-H. Lam*, Phys. Rev. Lett. 125, 258001 (2020)
[56] Shear-assisted grain coarsening in colloidal polycrystals, W. Li, Y. Peng, Y. Zhang, T. Still, A.G. Yodh, and Y. Han*, PNAS, 117, 24055 (2020)
[55] Power laws in pressure-induced structural change of glasses, H. Zhang, K. Qiao, and Y. Han*, Nat. Commun. 11, 2005 (2020)
[54] Seeing crystal formation one particle at a time, Y. Han*, Nat. Mater. 19, 377 (2020)
[53] Melting and solid–solid transitions of two-dimensional crystals composed of Janus spheres, T. Huang, Y. Han*, and Y. Chen*, Soft Matter, 16, 3015 (2020)
[52] Green-light-triggered phase transition of azobenzene derivatives toward reversible adhesives, Z. Wu, C. Ji, X. Zhao, Y. Han, K. Müllen, K. Pan, and M. Yin*, J. Am. Chem. Soc.141, 7385 (2019)
[51] Glass studies in colloidal systems, H. Zhang, Q. Zhang, F. Wang and Y. Han*, 物理 (Physics) 2019, 48(2): 69-81 (2019) (pdf)
[50] Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals, F. Wang and Y. Han*, J. Chem. Phys., 150, 014504 (2019)
[49] Compression-induced polycrystal-glass transition in binary crystals, H. Zhang and Y. Han*, Phys. Rev. X, 8, 041023 (2018)
[48] Grain-boundary roughening in colloidal crystals, M. Liao, X. Xiao, S.T. Chui, and Y. Han*, Phys. Rev. X 8, 021045 (2018)
[47] Phase transition studies at the single-particle level using colloidal systems, F. Wang and Y. Han*, 物理 (Physics) 47, 238 (2018)
[46] Homogeneous melting near the superheat limit of hard-sphere crystals, F. Wang, Z. Wang, Y. Peng, Z. Zheng, Y. Han*, Soft Matter 14, 2447 (2018) (inside front cover)
[45] Tunable Colloidal Crystalline Patterns on Flat and Periodically Micropatterned Surfaces as Antireflective Layers and Printable-Erasable Substrates, Ji Eun Song, Jong Seong Park, Beu Lee, Seung Beom Pyun, Jieun Lee, Min Gyu Kim, Yilong Han, and Eun Chul Cho, Adv Mater Interfaces, 1800138 (2018) (inside cover)
[44] Release of free-volume bubbles by cooperative-rearrangement regions during the deposition growth of a colloidal glass, X.Cao, H. Zhang, and Y. Han*, Nat. Commun., 8, 362 (2017)
[43] Colloidal diffusion over a quasicrystalline-patterned surface, Y. Su, P.-Y. Lai, B. J. Ackerson, X. Cao, Y. Han, P. Tong**, J. Chem. Phys. 146, 214903 (2017)
[4
2] Glassy spin dynamics in geometrically frustrated buckled colloidal crystals, Di Zhou, Feng Wang, Bo Li, Xiaojie Lou and Yilong Han*, Phys. Rev. X, 7, 021030 (2017)
[41]Yi Peng, Wei Li, Feng Wang, Tim Still, Arjun G. Yodh and Yilong Han*, Diffusive and martensitic nucleation kinetics in solid-solid transitions of colloidal crystals, Nat. Commun., 8, 14978 (2017)
[
40]Melting of colloidal crystals, Feng Wang, Di Zhou and Yilong Han*, Adv. Funct. Mater. 26, 8903–8919 (2016) (invited review).
[39] Modes of surface premelting in attractive colloidal crystals, Bo Li, Feng Wang, Di Zhou, Yi Peng, Ran Ni, and Yilong Han*,
Nature, 531, 485 (2016).
[38] 
Assembly and phase transitions within colloidal crystals (invited review), Bo Li, Di Zhou and Yilong Han*,  Nature Reviews Materials, 1, 15011 (2016)  (cover article) arxiv:1603.05021
[37] Non-classical nucleation in a solid-solid transition of confined hard spheres, Weikai Qi, Yi Peng, Yilong Han, Richard K. Bowles, and Marjolein Dijkstra*, Phys. Rev. Lett. 115, 185701 (2015) (Editor's Suggestion)
[36] Ground-state phase-space structures of two-dimensional ±J spin glasses: A network approach, Xin Cao, Feng Wang, and Yilong Han*, Phys. Rev. E,  91, 062135 (2015)
[35] Direct observation of liquid nucleus growth in homogeneous melting of colloidal crystals, Ziren Wang, Feng Wang, Yi Peng, and Yilong Han*, Nat. Commun., 6, 6942 (2015)
[34] Two-step nucleation mechanisms in solid-solid phase transitions, Yi Peng, Feng Wang, Ziren Wang, Ahemd Alsayed, Zexin Zhang, Arjun Yodh and Yilong Han*, Nature Materials, 14, 101–108 (2015). (Focus Article on the Cover) (Supplementary information)
[33] Structural signatures of dynamic heterogeneities in monolayers of colloidal ellipsoids, Zhongyu Zheng*, Ran Ni, Feng Wang, Marjolein Dijkstra, Yuren Wang and Yilong Han*, Nat. Commun., 5, 3829 (2014)
[32] Buckled colloidal monolayers connect geometric frustration in soft and hard matter, Yair Shokef*,Yilong Han, Anton Souslov, A. G. Yodh and Tom C. Lubensky, Soft Matter, 9, 6565 (2013)
[31] Using colloids to understand the dynamics of melting and crystallization, Y. Han*, 物理 (Physics) 42, 160-169, (2013)
[30] Glass transitions in monolayers of colloidal ellipsoids, Zhongyu Zheng* and Yilong Han*, AIP Conf. Proc. 1518, 153 (2013)
[29] Homogeneous melting of 3D superheated colloidal crystals, Ziren Wang, Feng Wang, Yi Peng, Zhongyu Zheng, and Yilong Han*, AIP Conf. Proc. 1518, 432, (2013)
[28] Test of the universal scaling law of diffusion in colloidal monolayers, Xiaoguang Ma, Wei Chen, Ziren Wang, Yuan Peng, Yilong Han, and Penger Tong*, Phys. Rev. Lett. 110, 078302 (2013)
[27] Imaging the homogenous nucleation during the melting of superheated colloidal crystals, Ziren Wang, Feng Wang, Yi Peng, Zhongyu Zheng, and Yilong Han*, Science 338, 87 (2012) pdf
[26] Colloidal electroconvection in a thin horizontal cell. III. Interfacial and transient patterns on electrodes, Yilong Han* and David Grier*,  J. Chem. Phys. 137, 014504 (2012)
[25] Self-similarity of phase-space networks of frustrated spin models and lattice gas models, Yi Peng, Feng Wang, Michael Wong, and Yilong Han*, Phys. Rev. E 84, 051105 (2011)
[24] Melting of microgel colloidal crystals, Y. Peng, Z.-R. Wang and Y. Han*, J. Phys.: Conf. Ser. 319, 012010
(2011)
[23] Glass transitions in quasi-two-dimensional suspensions of colloidal ellipsoids, Z. Zheng, F. Wang and Y. Han*, Phys. Rev. Lett. 107, 065702 (2011) (highlighted by Editor's Suggestion and Physics Viewpoint )
[22] A. M. Alsayed, Y. Han and A. G. Yodh, Book Chapter 10 "Melting and Geometric Frustration in Temperature-Sensitive Colloids" p229-281 in "Microgel Suspensions, Fundamentals and Applications" WILEY-VCH, 2011.
[21] Melting of multilayer colloidal crystals confined between two walls, Y. Peng, Z.-R. Wang, A. M. Alsayed, A. G. Yodh, and Y. Han*,  Phys. Rev. E  83, 011404 (2011)
[20] Two features at the two-dimensional freezing transitions, Z.-R. Wang, W. Qi, Y. Peng, A. M. Alsayed, Y. Chen, P. Tong, and Y. Han*, J. Chem. Phys.  134, 034506 (2011)
[19] Melting in two-dimensional Yukawa systems: A Brownian dynamics simulation, W. Qi, Z.-R. Wang, Y. Han*, and Y. Chen*, J. Chem. Phys. 133, 234508 (2010)
[18] Self-diffusion in two-dimensional hard ellipsoid suspensions, Z. Zheng and Y. Han*, J. Chem. Phys. 133, 124509 (2010)
[17] Melting of  colloidal crystal films, Y. Peng, Z.-R. Wang, A. Alsayed, A. G. Yodh, and Y. Han*, Phys. Rev. Lett. 104, 205703 (2010) (featured by Physical Review Focus )
[16] Two-dimensional freezing criteria for crystallizing colloidal monolayers, Z.-R. Wang, A. Alsayed, A. G. Yodh, and Y. Han*,  J. Chem. Phys. 132, 154501 (2010)
[15] Phase-space networks of the six-vertex model under different boundary conditions, Y. Han*, Phys. Rev. E 81, 041118 (2010)
[14] Phase-space networks of geometrically frustrated systems, Y. Han*, Phys. Rev. E  80, 051102, (2009)
[13] Quasi-two-dimensional diffusion of single ellipsoids: aspect ratio and confinement effects, Y. Han*, A. M. Alsayed, M. Nobili and A. G. Yodh  Phys. Rev. E  80, 011403 (2009)
[12] Particle Dynamics in Colloidal Suspensions Above and Below the Glass-Liquid Re-entrance Transition, A. Latka, Y. Han, A. M. Alsayed, A. B. Schofield, A. G. Yodh and P. Habdas*  Europhys. Lett. 86, 58001 (2009)
[11] Geometric frustration in buckled colloidal monolayers, Y. Han*, Y. Shokef*, A. M. Alsayed, P. Yunker, T. C. Lubensky and A. G. Yodh Nature 456, 898-903 (2008). Supplementary Information
[10] Melting of two-dimensional diameter tunable colloidal crystals, Y. Han*, N. Y. Ha, A. M. Alsayed, and A. G. Yodh  Phys. Rev. E  77, 041406 (2008)
[9] Colloidal electrostatic interactions near a conducting surface, M. Polin, D. G. Grier, and Y. Han Phys. Rev. E  76, 041406 (2007)
[8] Brownian motion of an ellipsoid, Y. Han, A. M. Alsayed, M. Nobili, J. Zhang, T. C. Lubensky, and A. G. Yodh  Science 314, 626-630 (2006). Supporting Online Materials
[7]  Colloidal electroconvection in a thin horizontal cell II: bulk electroconvection of water during parallel-plate electrolysis, Y. Han and D. G. Grier J. Chem. Phys. 125, 144707 1-7, (2006)
[6] Colloidal Patterns in a Thin Electrolysis Cell I: microscopic cooperative structures, Y. Han and D. G. Grier  J. Chem. Phys. 122, 164701, 1-11 (2005)
[5] Configurational temperatures and interactions in charge-stabilized colloid, Y. Han and D. G. Grier  J. Chem. Phys. 122, 064907, 1-14 (2005)
[4] Anomalous attractions in confined charge-stabilized colloid, D. G. Grier and Y. Han J. Phys.- Condens. Matt. 16, S4145-S4157 (2004)
[3] Configurational temperature of charge-stabilized colloidal monolayer, Y. Han and D. G. Grier  Phys. Rev. Lett. 92, 148301 (2004)
[2] Confinement-induced colloidal attractions in equilibrium, Y. Han and D. G. Grier Phys. Rev. Lett. 91, 038302 (2003)
[1] Vortex rings in a constant electric field, Y. Han and D. G. Grier  Nature 424, 267-268 (2003); erratum Nature 424, 510 (2003)

*corresponding author